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Introduction

• Nuclear Computational Low-Energy Initiative (NUCLEI) collaboration. 
− NUCLEI uses Density Functional Theory (DFT) simulations to predict the structure 

and binding energies of nuclei over a wide range of proton (Z) and neutron (N) 
numbers.

• The DFT simulations utilize a particular parameterization of a Skyrme energy 
density functional called UNEDF1 which depends on 12 free parameters that 
must be fit to data (M Kortelainen et al 2014).

• Fitting involves comparing (e.g.) predicted binding energies of nuclei to 
experimentally measured values.
− We use only binding energies as observables, but DFT with UNEDF1 will predict 

structure (shape) observables as well.
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UNEDF1 Model Fitting

• Model: 
𝑦 𝑍, 𝑁 = 𝜂 𝑍, 𝑁, 𝜃 + 𝜖

• Data: 500 parameter values (𝑡) x 79 (𝑍, 𝑁) 
Treat output as univariate: 39,500 data 
points in 14 dimensions

Observables 
(binding energy)

DFT simulator 𝜂(𝑍, 𝑁, 𝑡)
where 𝜃 is the “true” 
calibrated value of 
simulation parameters 𝑡

Observation noise: 
𝜖 ~ 𝑁(0, 2 𝑀𝑒𝑉)
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Uncertainty Quantification and the Need for Emulators

• We wish to quantify the uncertainty of the fit parameters 𝜃 in a Bayesian 
framework

𝑝 𝜃 𝑦 ~ 𝑝 𝑦 𝜃 𝑝(𝜃)
• Markov chain Monte Carlo is used to draw samples from 𝑝 𝜃 𝑦 . 

− Problem: this would require very many (𝑂(10!)) evaluations of the DFT simulation.
• Solution: Build a fast substitute for the full DFT simulation when evaluating the 

likelihood 𝑝 𝑦 𝑥 → Build an Emulator
• A Gaussian process is the emulator of choice (N Schunck et al 2020). 

− It is flexible, non-linear, and naturally quantifies uncertainties. However, GPs are slow 
for medium-large data ~𝑂(10"))
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Emulation with Gaussian Process

• Model simulator output statistically given a fixed number of simulator runs: 
𝑥 = 𝑍,𝑁, 𝑡 !

𝜂 𝑥 ~ 𝑁 𝜇 𝑥 , Σ 𝑥, 𝑥"; 𝑘
𝜇(𝑥) = 0

Σ#,% = 𝑘 𝑥# , 𝑥%; 𝜎, 𝑙 = 𝜎𝑒&
'!&'"

#

(#

• Predictions at new inputs 𝑥∗:
𝜂 𝑥∗ | 𝑥 ~ 𝑁 =𝜇, >Σ

=𝜇 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+ 𝑓(𝑥) − 𝜇(𝑥)
>Σ 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥∗ − 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+𝑘(𝑥, 𝑥∗)
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Exact Gaussian Process is too slow

• Predictions at new inputs 𝑥∗:
𝜂 𝑥∗ | 𝑥 ~𝑁 =𝜇, >Σ

=𝜇 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+ 𝑓(𝑥) − 𝜇(𝑥)
>Σ 𝑥∗|𝑥 = 𝑘 𝑥∗, 𝑥∗ − 𝑘 𝑥∗, 𝑥 Σ** 𝑥, 𝑥 &+𝑘(𝑥, 𝑥∗)

• Σ** 𝑥, 𝑥 &+ requires 𝑂(𝑁,) operations and 𝑂 𝑁- memory!
− 39500# ≈ 61.6×10$% operations and 39500% ≈ 11.6GB of memory

• What makes the data “big” is our choice to treat the multivariate output of the 
simulation (79 values of 𝑍, 𝑁) as univariate
− Previous work has incorporated multivariate output with a PCA approach, reducing 

input data size to only 500 and using several exact GPs to predict PCA weights (N 
Schunck et al 2020).
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Approximate Gaussian Process

• Sparse Variational GP: 
− Use 𝑚 “inducing points” to represent the large 

dataset as a smaller one. Learn inducing point 
locations in a variational manner (M Titsias
2009).

− Speedup! 𝑂(𝑚#) ops. and 𝑂 𝑚% memory!
• Stochastic Variational GP: 

− Learn inducing point outputs as well: enables 
mini-batch learning through stochastic gradient 
descent (J Hensman et al 2015).

• Deep Kernel Learned GP: 
− Neural network to construct a non-stationary 

kernel and use Structured Kernel Interpolation 
for fast matrix inverse (A Wilson et al 2016).
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Results: Accuracy

• Analyzed performance of these models
• Sparse Variational GP outperformed other 

options
− Stochastic Variational GP: likely the 

optimization problem became too hard when 
additionally learning GP outputs/covariance

− Deep Kernel GP: perhaps too hard of an 
optimization problem with learning neural 
network parameters

• “Best” model
− Sparse GP with 152 inducing points
− Approximately balances trade-off between 

accuracy and prediction time
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Results: Calibration

• Used best performing Sparse Gaussian Process for calibration, finding best fit 
simulation parameters 𝜃
− 152 inducing points

• Bayesian approach: 𝜃 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0, 1
• Three approaches to sampling from posterior

− Metropolis Hastings with tuned proposal distribution
− NUTS/HMC with Pyro python package (derivatives enabled through autodiff)
− Importance sampling: draws from prior are weighted by likelihood

• Goal: compare calibration using Sparse GP emulator to calibration with PCA 
approach (used NUTS in Stan)
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Results: Calibration

• All attempts to draw samples from 
posterior performed poorly

• Importance sampling
− Very few points have weight
− ~20 effective samples from ~3.5 million 

samples from prior
• NUTS sampler

− Chains didn’t mix (4 independent chains)
− Pyro implementation/integration was very 

slow to sample
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Results: Calibration

• Trace plots show poor mixing of Markov 
chains using MH and NUTS sampler

• MH sampler
− Samples had very high autocorrelation in all 

dimensions
• NUTS sampler

− High autocorrelation
− Chains didn’t mix
− NUTS worked well with calibration using the 

PCA-based emulator
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Issues: Looking at Residuals

• Investigating why calibration has been a 
challenge

• One possible reason: emulator is a poor 
approximation of the simulator and/or the 
data
− Residuals show structure, but difference 

between emulator and simulator is much 
smaller than difference between 
emulator/simulator and data
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Paths Forward

• Better understand source of sampling issues
− Comparing PCA-based emulator and the Sparse GP emulator

§ Is there structure the PCA-based emulator is capturing that the Sparse GP emulator isn’t?
− Further exploration of posterior geometry to understand issues with NUTS

• Implementation of discrepancy model: model the error between 
simulator/emulator and observed data

𝑦 𝑍, 𝑁 = 𝜂 𝑍, 𝑁, 𝜃 + 𝛿(𝑍, 𝑁) + 𝜖
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Software Produced

• nuclei
− Python package for training and testing various approximate GPs

• darwin_jupyterhub
− Python package for setting up a JupyterHub to access notebooks on Darwin

• darwin_dask
− Access to Darwin nodes through Dask
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nuclei module

• Train models

• Test models
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JupyterHub on Darwin
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Dask on Darwin

• Start Cluster

• List Clusters
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Dask on Darwin

• Connect and Run
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Conclusions

• Assessing the capability of approximate GP emulators to balance emulator 
accuracy with computational speed to facilitate improved UNEDF1 calibration
− Sparse GPs are straightforward to train and accurate
− Calibration is not straightforward with MCMC (using MH or HMC/NUTS)

• Produced reusable software for continuing and building on this work as well as 
accessing and using Darwin cluster compute resources


